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Abstract

In this paper the in~uence of the compressibility of the real material of the constituents of a porous
medium on the stresses will be discussed for a simpli_ed model of liquid!saturated porous solids[ The basis
of the model is the mixture theory restricted by the volume fraction condition "theory of porous media#[ In
comparison with the mixture theory\ one additional constitutive relation for the so!called real part of the
deformation of the solid phase will be formulated to close the system of equations for compressible binary
porous media within the framework of the theory of porous media[ The real deformation can be described
by a second order tensor which results from the multiplicative decomposition of the deformation gradients
of solid and liquid constituents[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

In contrast to a mixture\ a porous medium\ i[e[ a porous solid skeleton _lled with an arbitrary
number of liquids\ presents an internal structure\ namely the pore structure[ In general\ the pore
structure shows a complicated geometry so that it is almost impossible to separate the constituents
and to use the classical continuum mechanics to describe the behavior of the separated constituents
in consideration of all boundary and initial conditions "microscopic description of a porous
medium#[ For this reason\ a macroscopic theory has been developed and is still under study
concerning the description of the thermodynamic behavior of porous media[ The basis of this
theory is the mixture theory[ In order to identify the partial bodies\ the so!called concept of volume
fractions has been introduced[ This concept is understood as the determination of the fractions of
a body occupied by a constituent 8a "the superscript a denotes individual constituents\ for example
a solid phase a � S\ a liquid phase a � L# with the local ratio of the corresponding partial volume
"volume of the constituent 8a# in relation to the total volume "volume of the control space\ which
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is shaped by the solid skeleton#[ Readers interested in the foundation of porous media theories
"continuum theories of mixtures in consideration of the concept of volume fractions# are referred
to\ e[g[ Drumheller "0867#\ Bowen "0879\ 0871#\ de Boer and Ehlers "0875#\ Ehlers "0878#\ de Boer
"0880\ 0885a# and de Boer et al[ "0880#[

However\ the extension of the mixture theory by the concept of volume fractions makes no sense
if there is no coupling between the volume fractions and the _eld quantities of the mixture theory[
Therefore\ the consideration of the concept of volume fractions is connected with the introduction
of so!called real densities of the constituents "Fillunger\ 0825#[ The real density of 8a is a quantity
which transfers one important material behavior from the microscale to the macroscale\ namely
whether the real material of a constituent is compressible or incompressible[

It is well known that there is another crucial point in the development of a consistent theory for
porous media[ The introduction of the concept of volume fractions results in {smeared| continua[
This\ along with the saturation condition "i[e[ that the sum of the volume fractions of all constituents
is equal to one#\ is faced with the problem that for a saturated porous media consisting of k

compressible constituents\ k−0 _eld equations are missing[ The quantity k−0 arises from the
number of the volume fractions of the constituents together with the additional _eld equation\
namely the saturation condition[ In order to close the system of _eld equations for compressible
porous media\ Drumheller "0867#\ Bowen "0871# and Ehlers "0882# have formulated additional
evolution equations for k−0 volume fractions[ Another possibility has been indicated by Nunziato
and Walsh "0879# and by Passmann et al[ "0873#[ They have formulated additional balance
equations for the so called {equilibrated forces|\ which are in the opinion of the authors not
physically well founded[ With respect to the closure problem\ equally it is possible to introduce
additional constitutive equation "de Boer\ 0881#[ The problem regarding the missing _eld equations
does not occur in the mixture theory[ Within the framework of the mixture theory it is not possible
to decide whether a constituent is compressible or incompressible[

The goal of the present work is to discuss the in~uence of the compressibility of the real materials
of the constituents on the stresses for a liquid!saturated elastic porous solid[ With respect to the
description of incompressibility and compressibility of the real material of the constituents a purely
kinematic concept will be used[ This concept is based on a multiplicative decomposition of the
deformation gradient of the constituent 8a\ which is a helpful tool for transferring the deformation
behavior of a constituent at the microscale to the macroscale "Bluhm and de Boer\ 0886#[ In order
to close the system of _eld equations\ a constitutive relation for the real deformation of the solid
phase will be formulated\ for which it will be assumed that the rotation of the real deformation
part of the constituent solid has no in~uence on the stress state of the porous solid[ The results
obtained from the presented model regarding the constitutive relations for the stresses will be
compared with experimental observations and other well!known models[

1[ Concept of volume fractions and kinematics

The concept of volume fractions in addition to the mixture theory has shown itself to be an
e.cient tool for investigating saturated as well as empty porous solids[ With the assumption that
the pores are statistically distributed over the porous solid\ this concept e}ects the distribution of
the mass of the constituents over the control space of the porous solid[ Thus\ with the concept of



R[ de Boer\ J[ Bluhm : International Journal of Solids and Structures 25 "0888# 3794Ð3708 3796

volume fractions the single constituents are {smeared| over the control space of the solid phase and
occupy the whole volume of the control space simultaneously[ The {smeared| substitute continua
"partial bodies# for the solid and liquid phases of a binary porous medium show the same properties
as a mixture body\ so that the mixture theory is the most adequate basis for a thermodynamic
treatment of porous media at the macroscale[

In contrast to mixtures\ with respect to the description of porous media\ it is of essential
importance that the partial bodies of a porous medium be {identi_able| at any time during a
thermodynamic process[ The identi_cation will be done with the help of the concept of volume
fractions[

The actual volume v of a liquid _lled porous solid body BS is composed additively by the actual
partial volumina va of the two constituents 8S "solid# and 8L "liquid#]

v � vS¦vL � gBS

"dvS¦dvL# � gBS

dv\ "1[0#

where dva and dv are the actual volume elements of the single constituent and the total body\
respectively[ With the volume fractions "the concept of volume fractions is supported by micro!
mechanics\ de Boer and Didwania\ 0886#

na � na"x\ t# "1[1#

at each point x of the control space BS and at each time t\ provided with the property

dva � na dv\ "1[2#

the total volume v can be represented as

v � gBS

"nS¦nL# dv[ "1[3#

A comparison between eqn "1[0# and eqn "1[3# yields

nS¦nL � 0[ "1[4#

Equation "1[4# is the so!called saturation condition\ which plays an important role in the theory
of porous media because this condition "1[4# restricts the motion of the individual constitutions[

As has already been mentioned\ the concept of volume fractions has the e}ect of distributing
the mass of the individual constituents over the control space of the porous solid[ Taking the mass
of the constituent 8a with regard to the actual placement\

Ma � gBS

raR dva � gBS

naraR dv � gBS

ra dv\ "1[5#

one obtains the following expression for the density ra of the {smeared| substitute continua of 8a

"partial density#]

ra � naraR\ "1[6#

where raR is the so!called real density of 8a[ The real density is a quantity which transfers one
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important material behavior from the microscale to the macroscale\ namely whether the real
material of a constituent is compressible or incompressible\ i[e[ whether the real density of the
constituent is constant or not[

Within the framework of the general porous media theory\ a liquid!saturated porous medium
will be treated as an immiscible mixture of all constituents 8a with particles Xa\ where at any time
t each spatial point of the current placement of the solid phase "8S# is simultaneously occupied by
particles XL of the constituent liquid "8L#[ These particles proceed from di}erent reference positions
XL at time t � t9[ Thus\ each constituent is assigned its own independent motion function]

x � Xa"Xa\ t#\ "1[7#

where x $ BS[ In general\ the reference positions XL of the liquid particles do not need to be elements
of the solid body B9S of the reference placement "XL ( B9S#[ Only for deformation processes\ in
which the liquid phase ~ows out of the control space of the solid phase\ are the reference positions
XL elements of B9S "XL $ B9S#[

Using the Lagrange description of motion\ eqn "1[7#\ the velocity and the acceleration _eld of
the constituent 8a are de_ned as material time derivatives of the motion function "1[7#]

x?a �
1Xa"Xa\ t#

1t
\ xýa �

11Xa"Xa\ t#

1t1
[ "1[8#

The function Xa is postulated to be unique and uniquely invertible at any time t[ The existence of
a function inverse to eqn "1[7# leads to the Eulerian description of motion\ viz]

Xa � X−0
a "x\ t#[ "1[09#

By using eqn "1[09#\ one obtains an alternative representation of the velocity and acceleration
_elds]

va � x?a � x?a ðX−0
a "x\ t#\ tŁ � x?a"x\ t#\

aa � xýa � xýa ðX−0
a "x\ t#\ tŁ � xýa"x\ t#[ "1[00#

For vector and scalar _elds depending on x and t\ the material time derivatives are de_ned as

"[ [ [#?a �
1"[ [ [#

1t
¦ðgrad"[ [ [#Łx?a\ "[ [ [#?a �

1"[ [ [#
1t

¦grad"[ [ [# = x?a[ "1[01#

A mathematically su.cient condition for the existence of eqn "1[09# is given if the Jacobian

Ja � det Fa "1[02#

di}ers from zero[ From the physical point of view Ja must be positive[ In eqn "1[02# Fa is the
deformation gradient of the constituent 8a\ which is de_ned as

Fa �
1Xa"Xa\ t#

1Xa

� Grada Xa[ "1[03#

The material velocity gradient "Fa#?a and spatial velocity gradient La read as follows]
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"Fa#?a �
1x?a
1Xa

� Grada x?a\ La �"Grada x?a#F−0
a � grad x?a\ "1[04#

where the inverse of the deformation gradient Fa is given by

F−0
a �

1X−0
a "x\ t#
1x

�
1Xa

1x
� grad Xa[ "1[05#

The spatial velocity gradient La can be additively decomposed into a symmetric and a skew!
symmetric part denoted by Da and Wa\ respectively]

La � Da¦Wa\ Da �
0
1

"La¦LT
a #\ Wa �

0
1

"La−LT
a #[ "1[06#

The reader\ who is interested in a review of the kinematics of porous media is referred to\ e[g[ de
Boer and Ehlers "0875# and Ehlers "0878#[

2[ Field equations

The _eld equations for porous media consist of the balance equations of the constituents taken
from the mixture theory and the saturation condition[ Excluding mass exchanges between the solid
and liquid phases and neglecting additional supply terms of moment of momentum\ the local _eld
equations for an isothermal process for a binary porous medium are given by the local statements
of the balance equations of mass\

"rS#?S¦rS div x?S � 9\ "rL#?L¦rL div x?L � 9\ "2[0#

the balance equations of momentum\

div TS¦rS"bS−xýS# � −p¼S\ div TL¦rL"bL−xýL# � −p¼L\ "2[1#

where

p¼S¦p¼L � o\ "2[2#

and the saturation condition "1[4# together with the relation "1[6#\

nS¦nL � 0\ nS �
rS

rSR
\ nL �

rL

rLR
[ "2[3#

In the _eld eqns "2[1# and "2[2# the quantities raba and p¼a denote the external body force and the
supply term of momentum of the constituent 8a\ respectively[ The tensor Ta is the partial Cauchy
stress tensor of 8a[ The statement "2[2# with respect to the supply terms of momentum is a result
of the assumption that the sum of the balance equations over all constituents "balance equations
of the mixture# must be formally equivalent to the corresponding conservation laws "balance laws
without supply terms# of a one!component material "Truesdell|s third {metaphysical principle|\
Truesdell\ 0873#[ Furthermore\ it has been pointed out that additional supply terms of moment of
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momentum will be neglected[ Thus\ it is not necessary to present the balance equations of moment
of momentum\ which only yield the statement that the partial stress tensors are symmetric]

Ta �"Ta#T[ "2[4#

A broad review of the balance equations of the porous media and mixture theory\ respectively\ is
given by de Boer "0885a# and Bluhm "0886#[

The usual way to describe microscopic phenomena such as compressibility and incompressibility
of the real material is to introduce the real densities raR with the coupling of these densities\ due
to the saturation condition\ in the set of process variables[ The possibility to describe microscopic
properties by macroscopic quantities is a motivation to try a more sophisticated and elegant
procedure for expressing kinematic quantities of the microscale by quantities of the macroscale[
The normal way\ i[e[ the introduction of a motion function on the microscale which serves as the
basis for all further kinematic quantities\ e[g[ strains and velocity of the real material points\ as in
eqn "1[7#\ is not possible[ Thus\ no balance equations exist in the porous media theory for
determining this micromechanical quantity[ Therefore\ it is advisable to transfer the microscopic
deformation behavior of the constituents 8a to the macroscale[ For that reason the deformation
tensor FaR\ which is understood as a part of the deformation gradient Fa\ is introduced\ and it is
assumed to re~ect the microscopic deformations of the real material of the constituent 8a on the
macroscale[ In general\ the tensor FaR is not integrable on the macroscale\ i[e[ the microscopic
deformations are represented by incompatible deformations on the macroscale[ Furthermore\ FaR

is generally di}erent from Fa "Fa � FaR#\ and it is necessary to choose a second tensor FaN in order
to transfer this inequality into an equation[ The part FaN of the deformation gradient Fa\ as well
as FaR\ is in general not integrable[ On the contrary\ the deformation tensor Fa is integrable^ thus\
the deformation gradient on the macroscale Fa must be multiplicatively decomposed into the parts
FaR and FaN]

Fa � FaNFaR[ "2[5#

The tensor FaN is supposed to describe the remaining part of the deformation of the control space\
namely\ the change of the pores in size and shape[

The aforementioned range and the usefulness of the multiplicative decomposition has already
been shown by Bluhm and de Boer "0886#[ From the mathematical point of view\ FaN and FaR

have to be understood as local mappings of tangent "vector# spaces in each material point of the
partial body\ i[e[ the multiplicative decomposition "2[5# is generally connected with the suggestion
of an incompatible intermediate placement which re~ects the deformations of the real material[
It is worth mentioning that the multiplicative decomposition is compatible with an additive
decomposition of strains and strain rates as in the _nite elasto!plasticity theory^ "Lee\ 0858^ Haupt\
0874#[ For example\ the Lagrange strain tensor of the solid phase assigned to the porosity and the
pore structure\ with respect to the reference placement of 8S\ can be expressed as the di}erence
between the Lagrange strain tensors of the partial solid body and the real solid phase "Bluhm\
0886#\

ESN � ES−ESR �
0
1

"FT
SFS−FT

SRFSR# �
0
1

"CS−CSR#\ "2[6#

where CS and CSR are the right CauchyÐGreen tensors of the partial and real solid phase[
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In the following\ the in~uence of the decomposition "2[5# will be discussed in view of the
dependence of Fa on the volume fraction\ the real density of 8a and the determinants of the two
deformation parts of Fa[

Considering eqn "2[5#\ the determinant Ja of the deformation gradient Fa can be written as

Ja � det Fa � det FaN det FaR � JaNJaR[ "2[7#

By using eqns "1[6# and "2[7#\ the local statement "2[0# of the balance equation of mass of the
constituent 8a can be replaced by

raRð"na#?a¦naJ−0
aN "JaN#?aŁ¦na ð"raR#?a¦raRJ−0

aR "JaR#?aŁ � 9[ "2[8#

As eqn "2[8# is valid for arbitrary raR and na\ the terms in the brackets must be equal to zero in
order to ful_l the relation "2[8#[ By using the Lagrange description of motion\ the time integration
of the individual expressions yields

JaN �
na

9a

na
\ JaR �

raR
9a

raR
\ "2[09#

where na
9a and raR

9a denote the volume fraction and the real density of 8a at the position Xa at time
t � t9[ The insertion of eqn "2[09# into eqn "2[7# yields

Ja �
na

9a

na

raR
9a

raR
�

ra
9a

ra
[ "2[00#

The latter relation "Ja � ra
9a:r

a# is also the result of the time integration of the local balance
equations of mass\ eqn "2[0#\ regarding 8a[

With the help of the decompositions "2[5# and "2[7#\ respectively\ e[g[ the incompressibility of
the solid phase can be formulated by a kinematic condition\ namely JSR � 0\ as in the classical
continuum mechanics for one component solid materials[

Considering the multiplicative decomposition of Fa\ the model presented here for a binary
porous medium will be described by 13 _eld equations\

"Number of field equations# � 13\ "2[01#

viz[\ the balance equations of mass and momentum "7 equations#\ eqns "2[0# and "2[1#\ the local
statement concerning the supply terms of momentum\ eqn "2[2# "2 equations#\ the saturation
condition "2[3#a "0 equation#\ the relations "2[3#b\c regarding the volume fractions "1 equations#\
the additive decomposition "2[6# of the Lagrange strain tensors of the solid phase "5 equations#
and the results\ eqn "2[09#\ with respect to the determinants JaN and JaR "3 equations#[

The decomposition "2[5# of Fa will not be considered in the set of _eld equations[ Only the
in~uence of eqn "2[5# on the third invariant of the deformation gradient of the solid and liquid
phase and the additive decomposition of the strains of the solid phase will be taken into consider!
ation[ Thus\ the volume!preserving part of the liquid phase and the rotational part of the defor!
mation of the real material of the solid phase\ i[e[ the rotation of the intermediate placement of
8S\ will not be considered in the present model[
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3[ Constitutive theory

In the _eld equations mentioned previously\ there exists in total 44 _eld variables\ where 09
quantities are known]

K � "ba\ na
9a\ raR

9a #cV09[ "3[0#

In order to close the system of equations for the model of a binary porous medium consisting of
compressible phases "i[e[ the number of _eld equations must be equal to the number of unknown
_eld quantities# constitutive relations will be formulated for the following set of _eld quantities]

C � "Ta\ p¼L\ CSR#cV10[ "3[1#

Thus\ list of the unknown _eld quantities reads]

U � "Xa\ p¼S\ ra\ na\ raR\ JaN\ JLR\ ESN#cV13\ "3[2#

where JSR � zdet CSR has been considered[ The symbol V"[ [ [# denotes the dimension of the vector
space of the list of the corresponding _eld quantities[ A comparison of eqns "2[01# and "3[2# shows
that the number of _eld equations is equal to the number of unknown _eld quantities[

Concerning the thermodynamic restrictions relevant for the formulation of constitutive relations
for the _eld quantities summarized in eqn "3[1#\ one has to account for the entropy inequality of
the mixture[ For an isothermal process\ the entropy inequality for a binary mixture is given by "de
Boer\ 0885a#]

−rS"cS#?S−rL"cL#?L¦TS = DS¦TL = DL−p¼L ="x?L−x?S# − 9[ "3[3#

The quantity ca denotes the free Helmholtz energy function of the constituent 8a[
As mentioned before\ the saturation condition "2[3#a is understood as a constraint\ i[e[ as a

restriction on the motion of the solid and the liquid phase\ and must be accounted for in the
entropy inequality[ The in~uence of the saturation constraint on the inequality "3[3# will be taken
into account by using the material time derivative of the saturation condition "2[3#a following the
motion of the solid or the liquid phase\ together with the concept of Lagrange multipliers[ Here\
the material time derivative of the saturation condition following the motion of the solid phase
will be used]

"nS#?S¦"nL#?S � 9[ "3[4#

By using eqns "1[01#b\ "2[7# and "2[09#a and the material time derivatives

"JS#?S � JS"DS = I#\ "JL#?L � JL"DL = I#\

"JSR#?S � JSR"D
SR = I#\ "JLR#?L � JLR"DÞLR = I#\ "3[5#

the derivatives "nS#?S and "nL#?S read as follows]

"nS#?S � −nS"DS = I#¦nS"D
SR = I#\

"nL#?S � −nL"DL = I#¦nL"DÞLR = I#−grad nL ="x?L−x?S#[ "3[6#
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The multiplication of eqn "3[4# by the Lagrange multiplier l and "−0#\ and the insertion of eqn
"3[6# into eqn "3[4#\ yield the constraint

nSl"DS = I#−nSl"D
SR = I#¦nLl"DL = I#−nLl"DÞLR = I#¦l grad nL ="x?L−x?S# � 9[ "3[7#

The symbols "g# and "*# denote the quantities which refer to the local intermediate placement of
the solid and liquid phase[ The Lagrange multiplier l is understood as the reaction force of the
saturation constraint[ Now\ eqn "3[7# will be added to the entropy inequality "3[3#\ leading to]

−rS"cS#?S−rL"cL#?L−"p¼L−l grad nL# ="x?L−x?S#¦DS = "TS¦nSlI#−D
SR = "nSlI#

¦DL = "TL¦nLlI#−DÞLR = "nLlI# − 9[ "3[8#

One recognizes that the Lagrange multiplier l is connected with\ among others\ the material time
derivative of JSR and CSR\ respectively\ along the trajectory of 8S[ As CSR is a constitutive _eld
quantity in the model\ one has to consider the constitutive relation for CSR in the entropy inequality[
With the constitutive assumption that CSR is a function of the process variable CS\

CSR � CSR"CS#\ "3[09#

the material time derivative "CSR#?S can be written as

"CSR#?S � 1FT
SRD
SRFSR �

1CSR

1CS

"CS#?S � 1
1CSR

1CS

"FT
SDSFS#[ "3[00#

Using eqn "3[00#\ the trace of D
SR in eqn "3[8# can be replaced by

D
SR = I �
1CSR

1CS

"FT
SDSFS# = C−0

SR � FS$0
1CSR

1CS 1
T

C−0
SR %FT

S = DS\ "3[01#

and the entropy inequality of the binary porous medium reads]

−rS"cS#?S−rL"cL#?L¦"p¼L
E# ="x?L−x?S#¦DS = "TS

E#¦DL = "TL
E#−DÞLR = "nLlI# − 9[ "3[02#

The entropy inequality "3[02# represents an important relation for formulating restrictions for the
so!called {e}ective| partial stresses TS

E and TL
E and the {e}ective| interaction force p¼L

E[ These {e}ective|
quantities are de_ned as

TS
E � TS¦nSl6I−FS$0

1CSR

1CS 1
T

C−0
SR %FT

S7\
TL

E � TL¦nLlI\ p¼L
E � −p¼L¦l grad nL[ "3[03#

The so!called {e}ective| quantities are determined by the motion of the solid and:or liquid phase[
Furthermore\ the de_nition of the {e}ective| quantities in eqn "3[03# is associated with the change
of the list of the constitutive _eld quantities "3[1#[ Considering eqns "3[09#\ "3[02#\ "3[03# and the
preceding remarks\ the list of the {e}ective| constitutive quantities reads]

CE � "Ta
E\ p¼L

E#cV04[ "3[04#
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It will be further assumed that the free Helmholtz energy functions cS and cL and the extra
supply term of momentum p¼L

E are determined by

cS � cS"CS#\ cL � cL"JLR#\ p¼L
E � p¼L

E"x?L−x?S#\ "3[05#

compare with de Boer "0886#[ Thus\ the inequality "3[02# can be transferred into]

DS = 6TS
E−1rSFS

1cS

1CS

FT
S7¦DL = "TL

E#

−DÞLR = 6nLlI¦nLrLRJLR

1cL

1JLR

I7¦"x?L−x?S# = "p¼L
E# − 9\ "3[06#

where eqns "2[3#c\ "3[5#d and the expression for "CS#?S in eqn "3[00# have been used[
The evaluation of the inequality "3[06# for the free available quantities DS\ DL and DÞLR yields

the following constitutive relations for TS
E\ TL

E and l]

TS
E � 1rSFS

1cS

1CS

FT
S \ TL

E � 9\ l � p � −rLRJLR

1cL

1JLR

[ "3[07#

Regarding the interpretation of l � p as the pore pressure of 8L\ the reader is referred to de Boer
"0885a#[

The dissipation mechanism of the inequality "3[06# reads]

D � p¼L
E ="x?L−x?S# − 9[ "3[08#

The insertion of the ansatz

p¼L
E � g"x?L−x?S# "3[19#

into eqn "3[08# yields the condition that the dissipation mechanism is ful_lled if the parameter g is
zero or is positive]

g − 9[ "3[10#

The partial stress tensors and the supply term of momentum of 8L for the compressible binary
porous medium as de_ned in eqn "3[03# now read]

TS � −nSp6I−FS$0
1CSR

1CS 1
T

C−0
SR %FT

S7¦TS
E\

TL � −nLpI\ p¼L � −p¼L
E¦p grad nL\ "3[11#

where TS
E\ p � l and p¼L

E have been identi_ed in eqns "3[07#a\c and "3[19#[
By using "2[09#b\ the derivative of the free Helmholtz energy function of 8L\ with respect to JLR

in "3[07#c\ can be replaced by

1cL

1JLR

�
1cL

1rLR

1rLR

1JLR

� −
rLR

JLR

1cL

1rLR
\ "3[12#
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where the free Helmholtz energy cL is a function of rLR\ i[e[ cL � cL"rLR#[ Therefore\ the pore
pressure p of the liquid phase in eqn "3[07#c can be written as

p �"rLR#1 1cL

1rLR
[ "3[13#

Concerning the results for a hybrid model consisting of a compressible or an incompressible
solid phase and an incompressible liquid phase as well as for an incompressible model\ the reader
is referred to de Boer "0885b#[

In the remaining part of this chapter\ the in~uence of the real part of the deformations of the
solid phase together with the pressure of the liquid will be discussed for a simpli_ed model\ and a
comparison will be made between the model for a binary porous medium and the results of other
models and test observations[

The sum of eqns "3[11#a and "3[11#b yields the local statement

TS¦L � TS¦TL � −p6I−nSFS$0
1CSR

1CS 1
T

C−0
SR %FT

S7¦TS
E "3[14#

for the total stress state of the binary porous medium[ Equation "3[14# clearly reveals that the total
stress state of a liquid!saturated porous solid is composed of two parts^ one part is connected with
the pore!liquid pressure and the other part is governed by the motion of the partial solid phase[
Only if the in~uence of the deformations of the real solid phase can be neglected\ i[e[ CSR � I\ can
the relation "3[14# correspond to von Terzaghi|s statement of the e}ective stress {principle| "von
Terzaghi\ 0825#]

TS¦L � −pI¦TS
E[ "3[15#

By decomposing CS into a spherical part J1:2
S I and a volume!preserving part C
S\

CS � J1:2
S CŽS\ det CŽS � 0\ "3[16#

the function CSR � CSR"CS# can be transferred into

CSR � CSR"JS\ CŽS#[ "3[17#

Thus\ the partial derivative of CSR with respect to CS can be replaced by

1CSR

1CS

�
0
1

JS0
1CSR

1JS

& C−0
S 1¦J−1:2

S 6
1CSR

1CŽS

−
0
20

1CSR

1CŽS

CS & C−0
S 17\ "3[18#

and in consideration of

CSR � J1:2
SR CŽSR\ det CŽSR � 0\ "3[29#

the expression FSð"1CSR:1CS#TC−0
SR ŁFT

S in eqn "3[14# can be written as
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FS$0
1CSR

1CS 1
T

C−0
SR %FT

S � J−0
SR JS

1JSR

1JS

I¦
0
1

JS0
1CŽSR

1JS

= CŽ−0
SR 1I¦1J−0

SR J−1:2
S $FS

1JSR

1CŽS

FT
S%

D

¦J−1:2
S 6FS$0

1CŽSR

1CŽS 1
T

CŽSR%FT
S7

D

[ "3[20#

If the in~uence of the deviatoric deformation part of the real solid material is neglected on the
macroscale\

CŽSR � I\ "3[21#

then eqn "3[20# can be simpli_ed to]

FS$0
1CSR

1CS 1
T

C−0
SR %FT

S � J−0
SR JS

1JSR

1JS

I[ "3[22#

The insertion of eqn "3[22# into eqn "3[14# yields the following relation for the total stress tensor]

TS¦L � −p00−nSJSJ
−0
SR

1JSR

1JS 1I¦TS
E[ "3[23#

By using the constitutive relation

JSR �"JS#m\ m �
kS

kSR
\ "3[24#

where kS and kSR represent the compression moduli of the partial solid body and the real solid
material "de Boer\ 0885a^ Bluhm and de Boer\ 0885#\ the derivation of JSR referring to JS multiplied
by JSJ

−0
SR in eqn "3[23# reads as

JSJ
−0
SR

1JSR

1JS

�
kS

kSR
[ "3[25#

The insertion of eqn "3[25# into eqn "3[23# yields

TS¦L � −p00−nS kS

kSR1I¦TS
E[ "3[26#

For a purely hydrostatic stress state\ it follows from eqn "3[26# that

pS¦L � −p00−nS kS

kSR1¦pS
E\ "3[27#

where the notations

pS¦L �
0
2

"TS¦L = I#\ pS
E �

0
2

"TS
E = I# � rSJS

1cS

1JS

"3[28#

have been used regarding the total partial hydrostatic stress state of the porous body and the
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e}ective hydrostatic stresses of the solid phase[ Equation "3[27# represents a version of the e}ective
stress {principle| originally proposed by Suklje "0858#[ The validity of this formula for hydrostatic
stress states has been recently proved experimentally by Lade and de Boer "0886#[

By using the constitutive assumption

JSR �
0

nS
9Sk

SR
ðkS"JS−0#¦nS

9Sk
SRŁ "3[39#

instead of eqn "3[24#\ and considering eqns "2[7# and "2[09#a\ the total hydrostatic stress state reads

pS¦L � −p00−
kS

kSR1¦pS
E[ "3[30#

It is worth mentioning that the principle of e}ective stresses in the form of eqn "3[30# has already
been formulated by Biot and Willis "0846# for the theory of consolidation[ The relation "3[30# of
the concept of e}ective stresses has been derived by Nur and Byerlee "0860# for wet rocks under
high hydrostatic pressure[ In order to demonstrate the physical validity of eqn "3[30#\ Nur and
Byerlee "0860# made several simple compression and pore pressure tests on Weber sandstone\ for
example[ It is worth noting that the porosity of the tested Weber sandstone is nearly 5)\ i[e[
nS � 9[83[ Thus\ the calculation of the e}ective hydrostatic pressure of the solid phase by using
eqn "3[30# or eqn "3[27# yields nearly the same results\ so that\ in the opinion of the authors\ the
experiments of Nur and Byerlee "0860# do not clearly show whether the ratio of the compression
moduli is connected with the volume fraction of the solid or not[

The constitutive eqn "3[21# for C
SR and eqn "3[24# or eqn "3[39# for JSR are only valid for the
description of processes with small deformations of the solid phase[ Therefore\ the e}ective stress
tensor of the constituent 8S can be determined with the help of a constitutive relation in the form
of Hooke|s law\ regarding the reference placement of 8S together with the Lagrange strain tensor
ES\ see eqn "2[6#]

TS
E � SS

E � 1mSES¦lS"ES = I#I\ ES �
0
1
"FT

SFS−I#[ "3[31#

In eqn "3[31#\ the quantities SS
E\ mS and lS are the e}ective symmetric PiolaÐKirchho} stress tensor

and the so!called Lame� constants of the solid phase[ Furthermore\ in eqn "3[31# it has been
considered that\ for small deformations\ the e}ective Cauchy stress tensor is equal to the cor!
responding symmetric PiolaÐKirchho} stress tensor\ i[e[ TS

E � SS
E[

Assuming also small deformations for the constituent 8L\ the constitutive equation for the real
pore!liquid pressure for a compressible liquid phase in support of Hooke|s law concerning 8S

reads]

p � kLR00−
rLR

9L

rLR1� kLR"0−JLR# � −kLReLR\ "3[32#

where kLR denotes the compression modulus of the real liquid material\ and the term eLR � JLR−0
represents the microscopic volume deformation of the real liquid phase at the macroscale "de Boer\
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0885a#[ If the liquid phase is incompressible\ the pore pressure is an indeterminate quantity in the
model[

4[ Conclusions

The above investigations show that in the presented model for a liquid!saturated porous solid\
considering the deformations of the real material of the constituents\ the e}ective stresses of the
solid phase are in~uenced by the reduced pore liquid pressure[ The reduction factor depends on
the real material property and the deformations of the real solid material[ Furthermore\ it has
been shown that\ by neglecting the volume!preserving part of the real solid deformations\ the
results of the constitutive equations for the stresses of the binary model can be transferred to the
corresponding constitutive assumptions of the models of Suklje "0858# and Nur and Byerlee "0860#[
Also\ von Terzaghi|s statement of the e}ective stress {principle| "von Terzaghi\ 0825# can be derived
"Lade and de Boer\ 0886#[

The results show that further experimental investigations are needed to clarify the in~uence of
a volume!preserving deformation part of the real solid phase on the principle of e}ective stresses[
From the physical point of view\ the aforementioned deformation part must be considered in the
constitutive relation for the partial stress tensor of the solid constituent[ The reason is that\ for an
incompressible solid phase\ the volume!preserving deformations of the real solid material on the
microscale are responsible for the macroscopic deformations[ This is the case\ for example\ for a
porous solid _lled with an incompressible liquid phase under a hydrostatic stress state with drained
surfaces[ Consequently the aim of further investigations will be to study the principle of e}ective
stresses for compressible porous media in consideration of all deformations of the real solid
material on the microscale[
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